Al Governance Checklist

Practical controls for building dependable, high-value Al.

Artificial intelligence promises transformation, but its true value is unlocked through trust and control. Without a deliberate governance framework, organisations risk deploying systems that are unpredictable, non-compliant, and misaligned with their strategic goals. True "Practical Intelligence" isn't just about what AI can do; it's about ensuring it performs reliably, safely, and ethically.

This checklist provides a pragmatic starting point for establishing robust Al governance. It moves beyond theory to offer concrete controls across the entire Al lifecycle—from data handling to ongoing monitoring. Use it to assess your current practices, identify critical gaps, and build the operational DNA for Al that delivers sustainable, real-world results.

Adsum Al is here to help you translate these principles from a checklist into a live, orchestrated system that drives your business forward.

Why Governance Matters

Effective Al governance is not a bureaucratic hurdle; it is a strategic enabler. It is the framework that transforms a powerful but unpredictable technology into a reliable, scalable, and trusted business asset. In a landscape of increasing regulatory scrutiny and customer expectation, a "build it and see" approach is no longer viable.

Neglecting governance exposes your organisation to significant risks:

- Reputational Damage: Biased or unsafe AI can erode customer trust and damage your brand overnight.
- Regulatory Penalties: Non-compliance with privacy and data laws can result in severe financial penalties.
- Operational Failure: Models that drift or fail silently can disrupt core processes and lead to poor business decisions.
- Wasted Investment: Solutions built without clear oversight often fail to deliver their expected value or prove impossible to

Conversely, a robust governance framework provides a powerful competitive advantage. It builds a foundation of trust with customers, empowers teams to innovate safely, and ensures that every Al initiative is directly aligned with tangible business outcomes. It is the core of Practical Intelligence—making sophisticated technology simple, safe, and effective.

Data Privacy

The foundation of any trustworthy Al system is how it handles data. Respect for privacy and robust data security are non-negotiable, particularly under frameworks like the Australian Privacy Principles (APPs). These controls ensure your Al solutions are compliant by design.

Control	Status (Notes
Data Minimisation Only necessary data is collected, used, and stored for the model's purpose.		
Purpose Limitation Data is used strictly for the defined, explicit purpose consented to by individuals.		
De-identification & Anonymisation Personally Identifiable Information (PII) is removed or obscured where possible.		
Consent Mechanisms Clear, auditable consent is obtained for data collection and processing activities.		

Secure Data Handling Data is encrypted in transit and at rest, with strict access controls in place.	
Data Provenance A clear, traceable record of data origin, ownership, and transformation is maintained.	
Compliance Review Solutions are reviewed against the APPs and other relevant data protection laws.	

Model Safety & Robustness

An Al model must be resilient and behave predictably, even when faced with unexpected or adversarial inputs. Ensuring model safety is critical to preventing unintended consequences, from generating harmful content to making flawed critical decisions.

Control	Status (Notes
Adversarial Testing The model is tested against inputs designed to intentionally cause failure.		
Harmful Content Prevention Safeguards are in place to prevent the generation of unsafe or offensive outputs.		
Containment Strategies Clear procedures exist to disable or limit a model if it behaves erratically.		
Explainability (XAI) Methods are used to make model decisions understandable to human reviewers.		
Performance Benchmarking Model accuracy and performance are tested against pre-defined thresholds.		
Secure Model Storage Trained models are treated as sensitive assets with strict access controls.		
"Human in the Loop" Design Critical decisions require human review and final approval.		

Bias & Fairness

Al models learn from data, and if that data reflects historical or societal biases, the model will inherit and potentially amplify them. Proactively identifying and mitigating bias is an ethical imperative and essential for building equitable and effective solutions.

Control	Status ()	Notes
Fairness Definition Clear, context-specific fairness metrics are defined before development begins.		
Training Data Analysis The training dataset is audited for skews and under-representation of groups.		
Bias Evaluation The model's performance is tested across different demographic subgroups.		

Mitigation Techniques Methods like re-sampling or algorithmic adjustments are used to reduce bias.	
Impact Assessment The potential impact of biased outcomes on affected groups is evaluated.	
Inclusive Design Team Diverse perspectives are included in the AI development and review process.	
Grievance Mechanism A clear channel exists for users to report and appeal biased outcomes.	

Monitoring & Logging

An Al model is not a static asset. Its performance can degrade over time as real-world data patterns change—a phenomenon known as "model drift." Continuous monitoring and comprehensive logging are essential for maintaining performance, ensuring accountability, and diagnosing issues.

Control	Status ()	Notes
Performance Monitoring Key model metrics (e.g., accuracy, latency) are tracked in real-time.		
Drift Detection Automated alerts are configured to detect changes in data and prediction patterns.		
Audit Trail All model predictions, inputs, and key decisions are logged for accountability.		
Resource Usage Tracking System health, including compute and memory usage, is continuously monitored.		
Error Analysis Model failures are logged and systematically analysed to identify root causes.		
Alerting & Response Plan A clear plan exists for responding to performance degradation or failure alerts.		
Scheduled Retraining A defined strategy is in place for when and how to retrain the model.		

Change Management

Deploying an Al solution is a significant operational change. A structured change management process ensures that the technology is adopted effectively, stakeholders are aligned, and the organisation is prepared to manage the system throughout its lifecycle.

Control	Status ()	Notes
Stakeholder Communication A plan is in place to inform users about the Al's capabilities and limitations.		
User Training End-users are properly trained on how to interact with and interpret the Al system.		

Version Control A rigorous system is used for versioning models, code, and datasets.	
Documented Ownership Clear roles and responsibilities are assigned for the Al system's lifecycle.	
Rollback Plan A tested procedure exists to revert to a previous version in case of failure.	
Feedback Loop A formal process is established for collecting and acting on user feedback.	
Benefits Realisation A framework is used to measure and report on the Al's business value post-deployment.	

Glossary & Next Steps

Key Terms

- Adversarial Testing: The process of challenging an AI with intentionally disruptive inputs to test its security and stability.
- **Explainability (XAI):** A set of tools and techniques that aim to make an AI model's decision-making process understandable to humans.
- **Model Drift:** The degradation of a model's predictive power over time, caused by changes in the real-world data it processes
- Bias: A systematic error in an AI system that results in unfair outcomes for certain demographic groups.
- **Practical Intelligence:** The Adsum AI philosophy of architecting and deploying bespoke AI that delivers tangible, real-world

From Checklist to Capability

A checklist is a starting point. True governance is an orchestrated, automated system that runs quietly in the background, giving you the confidence to innovate and scale.

At Adsum AI, we specialise in architecting the very systems that turn these principles into practice. We build the operational DNA that makes AI dependable, compliant, and a core driver of your business strategy.

Ready to build AI you can trust? Book a 30-minute discovery call at adsum.ai